Stream Processing in the Cloud

نویسنده

  • Wilhelm Kleiminger
چکیده

Stock exchanges, sensor networks and other publish/subscribe systems need to deal with highvolume streams of real-time data. Especially financial data has to be processed with low latency in order to cater for high-frequency trading algorithms. In order to deal with the large amounts of incoming data, the stream processing task has to be distributed. Traditionally, distributed stream processing systems balanced their load over a static number of nodes using operator placement or pipelining. In this report we propose a novel way of doing stream processing by exploiting scalable cluster architectures as provided by IaaS/cloud solutions such as Amazon’s EC2. We show how to implement a cloud-centric stream processor based on the MapReduce framework. We will then design a load balancing algorithm which allows a local stream processor to request additional resources from the cloud when its capacity to handle the input stream becomes insufficient .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloud Computing Technology Algorithms Capabilities in Managing and Processing Big Data in Business Organizations: MapReduce, Hadoop, Parallel Programming

The objective of this study is to verify the importance of the capabilities of cloud computing services in managing and analyzing big data in business organizations because the rapid development in the use of information technology in general and network technology in particular, has led to the trend of many organizations to make their applications available for use via electronic platforms hos...

متن کامل

An Efficient Resource Allocation for Processing Healthcare Data in the Cloud Computing Environment

Nowadays, processing large-media healthcare data in the cloud has become an effective way of satisfying the medical userschr('39') QoS (quality of service) demands. Providing healthcare for the community is a complex activity that relies heavily on information processing. Such processing can be very costly for organizations. However, processing healthcare data in cloud has become an effective s...

متن کامل

Communication-Aware Traffic Stream Optimization for Virtual Machine Placement in Cloud Datacenters with VL2 Topology

By pervasiveness of cloud computing, a colossal amount of applications from gigantic organizations increasingly tend to rely on cloud services. These demands caused a great number of applications in form of couple of virtual machines (VMs) requests to be executed on data centers’ servers. Some of applications are as big as not possible to be processed upon a single VM. Also, there exists severa...

متن کامل

A Novel Method for VANET Improvement using Cloud Computing

In this paper, we present a novel algorithm for VANET using cloud computing. We accomplish processing, routing and traffic control in a centralized and parallel way by adding one or more server to the network. Each car or node is considered a Client, in such a manner that routing, traffic control, getting information from client and data processing and storing are performed by one or more serve...

متن کامل

Joint Allocation of Computational and Communication Resources to Improve Energy Efficiency in Cellular Networks

Mobile cloud computing (MCC) is a new technology that has been developed to overcome the restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell with multi-input and multi-output (MIMO) system in which the cell-interior users request service...

متن کامل

Elastic Resource Provisioning for Batched Stream Processing System in Container Cloud

Batched stream processing systems achieve higher throughput than traditional stream processing systems while providing low latency guarantee. Recently, batched stream processing systems tend to be deployed in cloud due to their requirement of elasticity and cost efficiency. However, the performance of batched stream processing systems are hardly guaranteed in cloud because static resource provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010